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Abstract. We study the fluctuations that are predicted in the autocorrelation function of an
energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that
the eigenfunction is a Gaussian random variable. We find an explicit formula for the root-mean-
square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations
turn out to be @7Y/2) in the small/i (high energy) limit. For comparison, any corrections
due to scars from isolated periodic orbits would also k@1B). The fluctuations take on a
particularly simple form if the autocorrelation function is averaged over the direction of the
separation vector. We compare our various predictions with recent numerical computations of
Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results
generalize to higher dimensions.

Two-dimensional billiards which are classically chaotic have proven to be an efficient
laboratory for the study of quantum chaos. The energy eigenvalues and eigenfunctions
can be computed with good accuracy, and compared with theoretical predictions of their
properties. These predictions are typically semiclassical in nature, involving properties that
are expected to be emergent in the formal limitiof> 0.

In practice, numerical methods are used to find the eigenvafuasd eigenfunctions
Y (x) of the time-independent Satinger equation,

(V2 + k)Y (@) = 0 (1)
wherex is in the domainB of the billiard, and the Dirichlet boundary condition
Ye(x) =0 ondB 2)

is imposed. Then largk corresponds to small; an expansion of some quantity in powers
of the wavelength. = 27 /k corresponds to an expansion in powersg:of —

Our focus here will be on the autocorrelation functiGpg(s), introduced by Berry
[1]. Given an eigenfunction, (x), a separation vectas, and an averaging regioR, the
autocorrelation function is defined to be

A
Crr(8) = A—i/ x Yy (z + S8)Yi(x — 39) (3)
R

where A is the area of the billiard andy is the area of the averaging regidh The
eigenfunctiony (x) is assumed to be real, and normalized in the usual way,

/ dx yi(x) = 1. 4)
B
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However, our normalization of g(s) differs slightly from Berry’'s; we will discuss the
reason for this later.

Berry conjectured that an energy eigenfunction in a chaotic billiard would appear locally
to be a superposition of plane waves with random directions of the momenta and random
phases. This implies that the expected valu€pk(s) is

_ [ Pps(p® —kHers
(Cir(8)) = [ @p @ —k2)
= Jo(ks) (5)

wheres = |s|, and Jo(x) is a Bessel function. We now know that there are corrections
to this result (‘scars’ [2]) associated with isolated periodic orbits in the classical billiard.
Assuming that the averaging regiad encompasses many wavelengths in the direction
perpezndicular to each orbit giving a scar, then the scar corrections to (5) are suppressed by
Om*/?).

In the limit that the number of superposed plane waves becomes infinite, the central
limit theorem tells us that the functiofy (x) can be treated as a Gaussian random variable
[1, 3,4]. This means that we have prior information (in the sense used in Bayesian statistical
analysis) abouty () which can be represented by a functional probability distribution of
the form

P(w|k>=Nexp[— 3 /B o?xy /B x2 ¥ (z1) K (w1, T2; kw(wz)] (6)

Here \V is a normalization constant, arfd(x, z2; k) is the inverse oﬂglJo(klacl — x|)
in the sense that

/ xp K (21, x2; k) Jo(k|x2 — 3]) = Apd®(z1 — x3) (7)
B

with z; and x3 restricted toB. Given an eigenvalu&?, P(y|k) [loep v () is the
probability that the actual eigenfunctiofy () is betweeny (x) and ¥ (x) + dy (x) for
all pointsz in the billiard.

Angle brackets around some quantity depending/pr) are now defined to represent
an average of that quantity over the probability distribut®fy|k). Thus we have

(Y (@)Y (x2)) = Azt Jo(klze — T2). ®)

Combining this with the definition (3) of r(s) gives (Cy.r(s)) = Jo(ks), in agreement
with (5). However, the probability distribution (6) also contains information about the
fluctuations of Cy g(s) about (Ci r(s)). Our goal is to study the properties of these
fluctuations.

Before proceeding, let us recall that there is striking numerical evidence in favour
of another consequence of (6): specifically, the probabiftyy)dy that any actual
eigenfunction has a value betwegnand x + dy at any particular point is given by

P(x) = (Ag/2m)? exp(— 3 Apx?). )

This prediction can be tested by dividing the billiard into small pixels, and making
a histogram of the value of the eigenfunction at each pixel. This was first done by
MacDonald and Kaufman [4] in their study of eigenfunctions of the stadium billiard with
k?Ap ~ 1.3 x 10*. More recently, Li and Robnik [5] studied eigenfunctions of the Robnik
billiard [6] with k?Ap ~ 2.5 x 10°, and found excellent agreement with (9). Generally, the
prediction (6) is expected to be valid provided that distortions of the billiard boundary on
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the scale of the wavelength= 27 /k do not permit the formation of an integrable billiard
[4].
Our main tool in studying the fluctuations 6f, z (s) about{Cy r(s)) will be the relation
[3,7,8]
(Ui (@) Vi (@2) Yi(@3) Y (x4)) = (Vi (@)Y (@2)) (Vi (T3) Y (24))
H (@)Y (@) (Vi (@) Vi (T4)) + (Vi (T2) Vi (Ta)) (Vi (x2) Yr (x3)).  (10)
The derivation of (10) from (6) can be found in textbooks on Euclidean quantum field theory
(e.g. [9]). We will focus on the quantity
Ak r(81, 82) = ([Ci.r(81) — (Cr r(SD)[Cr.r(82) — (Cr.r(52))])
= (Cr,r(81)Ck,r(82)) — (Cr,r(81))(Ck r(S2))- (11)

A r(s, 8)/2 represents the root-mean-square discrepancy to be expected bélween
and (Cr.r(s)) [7], while Ag r(s1, s2) tells us whether the discrepancies for= s; are
correlated with those fos = s,, and whether this correlation is positive or negative.

Let us note that quantities such ag/(x1)|? |V (x2)|?") have been computed
previously, but with the angle brackets representing an average over a random potential
[10]. This random-potential average was subsequently shown to be equivalent to the average
over the eigenfunction probability distributioR(y|k) [11]. Closely related results (with
random matrix theory as the starting point) were also presented in [12].

Returning to (11), we use the definition (3) 6f z(s) and the combinatoric property
(10) to get

A2
Ay r(81, 82) = A—‘;/ dlef oz [(Yr (@1 + 350V (@2 + 352))
R YR R

X (Y (w1 — 380 (w2 — 352))
+ (W (1 + 35DV (2 — 552)) (Y (w1 — 35DV (2 + 352))]. (12)
Now using (8), we find

1
A r(s1.82) = — / d’xy / d?xa [Jo(klu + s_|) Jo(klu — s_])
Az Jr R

+Jolklu + s ) Jo(klu — s.])] (13)
where we have defined
U==x— T and Sy = %(sl + s5). (14)
To proceed further, we assume that the asgais large, in the sense that both
Ag > 22 and  Ag > st (15)

In this case, the argument of each Bessel function is large over most of the range of the
integrand, and we can use the asymptotic formula

2 \¥2 T
Jo(x) ~ (”) cos(x — Z) (16)

which in fact is an excellent approximation for all> 1. Making the replacement (16),
expanding ins/u, and keeping only those terms which are not suppressed by extra powers
of eitherku or s2/u?, we have

2 T T
Jolk|lu + s|)Jo(k|lu — s|) ~ —n cos(ku + ks cosh — Z) cos(ku — ks cosh — Z>

~ i[sin(2ku) + co92ks cosh)] 17)
wku
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where6 is the angle between ands. We now use (17) in (13), and notice that the rapid
oscillations of sii2ku) will cause this term to integrate to zero (to a good approximation).
Thus we find

Axr(s1, 82) = / d?xy / d?x, u=[cos(2ks_ cosH_) + coq2ks, cosh,)] (18)
R R

nkA%
whered, (6_) is the angle between ands, (s_).

To get a more explicit formula, we need to choose the shape of the averaging Region
For a disk of diametes/ and aready = %ndz, the integrals in (18) can be done in closed
form by changing the integration variables4o= x; — xz, andv = x; + x>, integrating
over v subject to the constraint® + u| < d, and then integrating over the magnitudewof
to get

16
1/2
3%k A R/
whered, and6_ have each been shifted and renamdedPerforming the integral ovet
gives us our central result,

2 dg
A r(81,82) = [ P [cos(2ks_ cosf) + coq2ks. c0SH)] (29)
0

16
Ay r(81,82) = m[-’o(“sl — 82|) + Jo(k|s1 + s2])]. (20)

We now turn to a study of the implications of (20). The expected discrepancy between
Cr.r(s) and (Cy r(s)) is given by

Arr(s, 8)Y% = 1.38(k2Ag) Y2 + LJo(2ks)]V? (21)

where the function in square brackets attains its maximum value of one ihen 0.
Since (21) is proportional t6~%2, it is O (hY/?); thus, the RMS amplitude of the expected
fluctuations inCy g(s) vanishes in the classical limit. However, this amplitude is not
numerically small unlesd z > A2. Both of these points are in accord with Berry’s original
(qualitative) discussion of the approach@f (s) to (Cy r(s)) ash — 0 [1]. Furthermore,
Ar.r(s, 5)¥? is the same order ih as any corrections due to scars. This is consistent with
the idea [3] that scars represent a particular organization of the Gaussian fluctuations in the
eigenfunction, rather than constituting an additional phenomenon.

For comparison, we turn to the numerical results of Li and Robnik [5] for the Robnik
billiard [6]. We computedCy r(s) using the eigenfunction witk = 790644, shown in
figure 3 of [5], which was kindly supplied to us by Li and Robnik. The averaging region
R was taken to be a disk with diametér= 0.273 = 34.4)x. For this value ofd, the
coefficient of the bracketed function in (21) is 0.100. The leading corrections to (20) from
terms we have neglected (due to our various approximations) are suppressed by an extra
factor of either ¥kA7/> = 0.005 ors?/Ag; for ks = 30, s2/Az = 0.025. In figures 14,
we plot the actual correlation functiofi, (s) as a full curve, along with a shaded band
encompassing the rand€; (s)) & A z (s, s)%/?, for four different averaging regions. In
these plotss is taken to be parallel to the-axis; we found visually similar results (which
are not shown) for other directions ef We see that the actuél; z(s) usually lies within
the shaded band, but also has (sometimes large) excursions outside it. Without attempting a
detailed quantitative analysis, we can say that these graphs are qualitatively consistent with
what we expect.

Li and Robnik [5] suggested that the discrepancy betw@ep(s) and (C z(s)) could
be reduced by averaging; z(s) over the direction ok. Let us define

_ 2 d
Corls) = / 2—¢’Ck,R<s<¢)) (22)
0 JT
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Figure 1. The autocorrelation functiofy r(s) is shown as a full curve. The grey band depicts
(Cr.r(8)) £ Ak r(s, $)Y2, which is the expected root-mean-square rangeCpk(s). The
Robnik billiard is shown in the inset; the averaging regi®ms indicated by the full circle, and
the direction of the separation vectsris indicated by the direction of the two-headed arrow,
which has unit length, equal to 126 wavelengths.

: \/\/\/\/ \

10 20
ks

C(s)

Figure 2. Same as figure 1.

(s cosg, s sing). Obviously, we have
(Crr(8)) = (Crr(8)) = Jo(ks). (23)

We also define

Ak r(51,52) = (Cr r(51)Cr v (52)) — (Cr.r(51))(Cr. g (52))
d d
f & f EAM(sl«m s2(é2). (24)

Then, using (20), we find

where¢ = ¢,

RerGorsm) = — 2o / ; D Jo(kls? + 52 £ 2uszcosgl) (25)
’ 3n32kAY? Jo  2m
— ¢o; this integral can be performed to yield

_ 32
Ak,R(Sl’ §2) = mjo(ksl)JO(k52)~ (26)
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Figure 3. Same as figure 1.
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Figure 4. Same as figure 1.

The fact that Ay g(s1.s2) is proportional to (Cy.r(s1))(Cr.r(s2)) has dramatic
consequences; it implies thay g (s)/(Cr r(s)) must be independent of To demonstrate

this, we choose a set of orthonormal basis functigh§), n = 0,1,2,..., with fo(s)
chosen to be equal tC; z(s)). We require orthonormality in the sense that
/ ds w(s)fn(s)fm(s) = snm (27)
0

wherew(s) is any weight function which ensures the convergence and correct normalization
of the integral whem = m = 0. (Since(Cy z(s)) = Jo(ks), we could construct such a
set of basis functions by starting with the Bessel functidpgs) and then performing
Gram-Schmidt orthogonalization.) Once we have the basis functions, we can write

Cir(s) = i Cn f(5)
. n=0 (28)
o= [ @) £(5)Cun)
where thec,’s should be regarded as random variables. By construction, we have
{cn) = éno- (29)
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Using (26), we can also compute the expected value’ ofVe find

(c2) — (ca)? :/o ds1 w(s1) fr (Sl)/o ds2 w(s2) fu (s2) Ak r (51, 52)
3
 3r32kAY?

32

= 2% b
/2%
3n32k Ay

fo sz w(s1) £ (51) folsn) fo sz w(s2) £ (52) fols2)
(30)

Thus(c2) = 0 if n # 0, indicating that the probability distribution has no support for any
nonzeroc, other thancy. ThereforeC z(s) o fo(s) = (Cr.g(s)).

However, we must remember that there are additional contributia&@}acésl, s2) which
are suppressed by an extra factor of eith,drA},{ 2 or 52/ A, and that these will make small
corrections to the functional form af; z(s1, s2). This means tha€; z(s)/(Ci z(s)) should
be independent of up to corrections of order/TsA}{2 ands?/Ag.

=

\/\\/\\/\\/\\/

10 20
ks

c(9

o

Figure 5. The autocorrelation functio@k,R(s), averaged over the direction of the separation
vector s, is shown as a full curve. The grey band depis. & (s)) £ A z(s, s)Y/2, which is
the expected root-mean-square rang€pk (s). The Robnik billiard is shown in the inset; the
averaging regiorr is indicated by the full circle.

The discrepancy betweeT x(s) and(Cy.x(s)) is governed by\; (s, s)¥2. In figure 5,
we plot the actual direction-averaged correlation functifrg (s) as a full curve, along
with a shaded band encompassing the raf@ez(s)) + A z(s, s)%2, for one of the four
averaging regions used previously. We see that the acuals) is consistent with our
expectations. In figure 6, we plo€]  (s) — Cr.z(0) Jo(ks)] + Cy z (0) for all four averaging
regions; this quantity should be independent @ind equal taC; ¢ (0), up to corrections of
order ],/kAj,'{2 = 0.005 ands?/Az = 0.025 (forks = 30). (We plot this quantity instead of
the ratioCy z(s)/Jo(ks) because the latter is dominated by numerical errors near the zeros
of its denominator.) The plots are remarkably flat; the small glitches which are present are
most likely due to the build-up of round-off errors in the numerical computation. These
plots confirm our prediction tha€ z(s)/(Cr.z(s)) should be independent of

This concludes our analysis of the fluctuations in the autocorrelation function for the
case of a circular averaging region. We now consider the dependentg gk, s2) on
the shape of the averaging regién

For noncircularR, the integrals in (18) cannot be done in closed form for nonzeko
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Figure 6. [Cx.r(s) — Cr.r(0)Jo(ks)] + Cr.r(0) for each of the four averaging regions, with an
expanded vertical scale. This quantity is predicted to be independent of

For the special cas& = s, = 0, however, we can evaluate (18) for a rectangular averaging
region. This will give us the shape dependencapk (0, 0), and therefore (we hope) some
idea of the shape dependence/ofr(s1, s2) for generals; ands,. For a rectangle with
edge lengths: and b, each of which is much greater than the wavelengta 2z /k, we

find

4 _ _
Ay r(0,0) = W[é’(é) +gE™H —E+&H¥] (31)

whereAr = ab is the rectangle’s ared, = b/a is the ratio of edge lengths, and
g(§) =§7%% 4+ 3¢ 2sinh &, (32)

The ratio of A; g (0, O) for a rectangle taA, (0, O) for a circle of the same area decreases
monotonically from 0.99 foré = 1 to 0.74 foré = 10, and ultimately falls off as
£Y2In¢ for large £. Thus, for moderate values @& A z(0,0) exhibits only a mild
shape dependence.

Earlier numerical computations 6 z(s) [4,5, 13] are all in qualitative agreement with
our considerations; specifically, the average discrepancy bet@ggts) and (Ci z(s)) is
always roughly given byk?Az)~%4. A detailed comparison is hindered by two issues.
First, in accord with Berry’s original definition, earlier authors usually work with an
autocorrelation functionﬁk‘R(s) which, in our notation, is

(33)

From our point of viewﬁk,R(s) is a much more complicated object th@p(s); there is no
simple expression fo(r@k,R(s)), because the relevant functional integral @@fz (s)/ Cx. 2 (0)
times the probability distributio® (14 |k) overy,) cannot be done using the simple Gaussian
combinatorics of (10). Of course, by definiti@h (0) = 1, and so essentially what happens
is that any fluctuation irC;_z(0) shows up as a multiplicative enhancement or suppression
of fluctuations ian,R(s) at nonzeraos.

Another problem occurs if an axis of symmetry of the billiard passes through the
averaging region. Every energy eigenfunction is either symmetric or antisymmetric under
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reflection about such an axis; this can be handled analytically by writing
Vir(x, y) !
kX, Y \/E
(where we have illustratively assumed an eigenfunction symmetric about-&xés), and
treating x.(x) as a Gaussian random variable. This approach considerably enhances the
complexity of the analysis, however; for example, the number of independent terms on the
right-hand side of (10) grows from three to 48. The simplest solution is to do numerical anal-
ysis with averaging regions that do not cross any axes of symmetry, as we have done here.
Finally, we note that all of our results have a straightforward generalization to higher
dimensions. For @-dimensional billiard, the autocorrelation function becomes [1]

_ [d?ps(p? —kPHer

Dae (e, ») + xe(x, —y)] (34)

Cn@) = "5 50212,
_ o(D-2))2 Jp-2/2(ks)
= 2(P=2/ F(D/Z)W
= Fp(ks) (35)

where J, (x) is a Bessel function. The generalizations of (20) and (26), which follow from
the properties of'p(ks), are

YD
Ay r(81, 82) = W[FD(H& — 82|) + Fp(k|s1 + s2])] (36)
and
N 2yp
Arr(s1, $2) = Fp(ksy) Fp(ks2) (37)

kD,lvlgD—l)/D

where Vy is the D-dimensional volume of the spherical averaging region, apdis a
numerical factor which we have not computed.

To conclude, we have performed an analysis of the autocorrelation fun€figtis)
under the assumption that the energy eigenfuncfipfx) behaves like a Gaussian random
variable, in a sense which we have made precise. We find that, for a two-dimensional
billiard, Ci z(s) should have @'/?) fluctuations about its expected valy€; z(s)) =
Jo(ks); scars from isolated periodic orbits would give correctionsCigg (s) which are
also QiY?). We have given analytic formulae for the root-mean-square amplitude of
the expected fluctuations i@, z(s). We find that a particularly useful object to study is
Ci.r(s), which is C; (s) averaged over the angle ef We predict thaiCy z(s)/Jo(ks) is
independent of, a prediction which is very well satisfied by the numerical results of Li
and Robnik for the Robnik billiard.
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