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Gaussian fluctuations in chaotic eigenstates

Mark Srednicki† and Frank Stiernelof
Department of Physics, University of California, Santa Barbara, CA 93106, USA

Received 10 April 1996

Abstract. We study the fluctuations that are predicted in the autocorrelation function of an
energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that
the eigenfunction is a Gaussian random variable. We find an explicit formula for the root-mean-
square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations
turn out to be O(h̄1/2) in the smallh̄ (high energy) limit. For comparison, any corrections
due to scars from isolated periodic orbits would also be O(h̄1/2). The fluctuations take on a
particularly simple form if the autocorrelation function is averaged over the direction of the
separation vector. We compare our various predictions with recent numerical computations of
Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results
generalize to higher dimensions.

Two-dimensional billiards which are classically chaotic have proven to be an efficient
laboratory for the study of quantum chaos. The energy eigenvalues and eigenfunctions
can be computed with good accuracy, and compared with theoretical predictions of their
properties. These predictions are typically semiclassical in nature, involving properties that
are expected to be emergent in the formal limit of ¯h → 0.

In practice, numerical methods are used to find the eigenvaluesk2 and eigenfunctions
ψk(x) of the time-independent Schrödinger equation,

(∇2 + k2)ψk(x) = 0 (1)

wherex is in the domainB of the billiard, and the Dirichlet boundary condition

ψk(x) = 0 on ∂B (2)

is imposed. Then largek corresponds to small ¯h; an expansion of some quantity in powers
of the wavelengthλ = 2π/k corresponds to an expansion in powers of ¯h.

Our focus here will be on the autocorrelation functionCk,R(s), introduced by Berry
[1]. Given an eigenfunctionψk(x), a separation vectors, and an averaging regionR, the
autocorrelation function is defined to be

Ck,R(s) ≡ AB

AR

∫
R

d2x ψk(x + 1
2s)ψk(x − 1

2s) (3)

whereAB is the area of the billiard andAR is the area of the averaging regionR. The
eigenfunctionψk(x) is assumed to be real, and normalized in the usual way,∫

B

d2x ψ2
k (x) = 1. (4)
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However, our normalization ofCk,R(s) differs slightly from Berry’s; we will discuss the
reason for this later.

Berry conjectured that an energy eigenfunction in a chaotic billiard would appear locally
to be a superposition of plane waves with random directions of the momenta and random
phases. This implies that the expected value ofCk,R(s) is

〈Ck,R(s)〉 =
∫

d2p δ(p2 − k2)eip·s∫
d2p δ(p2 − k2)

= J0(ks) (5)

where s = |s|, and J0(x) is a Bessel function. We now know that there are corrections
to this result (‘scars’ [2]) associated with isolated periodic orbits in the classical billiard.
Assuming that the averaging regionR encompasses many wavelengths in the direction
perpendicular to each orbit giving a scar, then the scar corrections to (5) are suppressed by
O(h̄1/2).

In the limit that the number of superposed plane waves becomes infinite, the central
limit theorem tells us that the functionψk(x) can be treated as a Gaussian random variable
[1, 3, 4]. This means that we have prior information (in the sense used in Bayesian statistical
analysis) aboutψk(x) which can be represented by a functional probability distribution of
the form

P(ψ |k) = N exp

[
− 1

2

∫
B

d2x1

∫
B

d2x2ψ(x1)K(x1,x2; k)ψ(x2)

]
. (6)

HereN is a normalization constant, andK(x1,x2; k) is the inverse ofA−1
B J0(k|x1 − x2|)

in the sense that∫
B

d2x2K(x1,x2; k)J0(k|x2 − x3|) = ABδ
2(x1 − x3) (7)

with x1 and x3 restricted toB. Given an eigenvaluek2, P(ψ |k)∏x∈B dψ(x) is the
probability that the actual eigenfunctionψk(x) is betweenψ(x) andψ(x) + dψ(x) for
all pointsx in the billiard.

Angle brackets around some quantity depending onψk(x) are now defined to represent
an average of that quantity over the probability distributionP(ψk|k). Thus we have

〈ψk(x1)ψk(x2)〉 = A−1
B J0(k|x1 − x2|). (8)

Combining this with the definition (3) ofCk,R(s) gives 〈Ck,R(s)〉 = J0(ks), in agreement
with (5). However, the probability distribution (6) also contains information about the
fluctuations ofCk,R(s) about 〈Ck,R(s)〉. Our goal is to study the properties of these
fluctuations.

Before proceeding, let us recall that there is striking numerical evidence in favour
of another consequence of (6): specifically, the probabilityP(χ) dχ that any actual
eigenfunction has a value betweenχ andχ + dχ at any particular pointx is given by

P(χ) = (AB/2π)
1/2 exp(− 1

2ABχ
2). (9)

This prediction can be tested by dividing the billiard into small pixels, and making
a histogram of the value of the eigenfunction at each pixel. This was first done by
MacDonald and Kaufman [4] in their study of eigenfunctions of the stadium billiard with
k2AB ' 1.3 × 104. More recently, Li and Robnik [5] studied eigenfunctions of the Robnik
billiard [6] with k2AB ' 2.5× 106, and found excellent agreement with (9). Generally, the
prediction (6) is expected to be valid provided that distortions of the billiard boundary on
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the scale of the wavelengthλ = 2π/k do not permit the formation of an integrable billiard
[4].

Our main tool in studying the fluctuations ofCk,R(s) about〈Ck,R(s)〉 will be the relation
[3, 7, 8]

〈ψk(x1)ψk(x2)ψk(x3)ψk(x4)〉 = 〈ψk(x1)ψk(x2)〉〈ψk(x3)ψk(x4)〉
+〈ψk(x1)ψk(x3)〉〈ψk(x2)ψk(x4)〉 + 〈ψk(x1)ψk(x4)〉〈ψk(x2)ψk(x3)〉. (10)

The derivation of (10) from (6) can be found in textbooks on Euclidean quantum field theory
(e.g. [9]). We will focus on the quantity

1k,R(s1, s2) ≡ 〈[Ck,R(s1)− 〈Ck,R(s1)〉][Ck,R(s2)− 〈Ck,R(s2)〉]〉
= 〈Ck,R(s1)Ck,R(s2)〉 − 〈Ck,R(s1)〉〈Ck,R(s2)〉. (11)

1k,R(s, s)
1/2 represents the root-mean-square discrepancy to be expected betweenCk,R(s)

and 〈Ck,R(s)〉 [7], while 1k,R(s1, s2) tells us whether the discrepancies fors = s1 are
correlated with those fors = s2, and whether this correlation is positive or negative.

Let us note that quantities such as〈|ψk(x1)|2n|ψk(x2)|2m〉 have been computed
previously, but with the angle brackets representing an average over a random potential
[10]. This random-potential average was subsequently shown to be equivalent to the average
over the eigenfunction probability distributionP(ψk|k) [11]. Closely related results (with
random matrix theory as the starting point) were also presented in [12].

Returning to (11), we use the definition (3) ofCk,R(s) and the combinatoric property
(10) to get

1k,R(s1, s2) = A2
B

A2
R

∫
R

d2x1

∫
R

d2x2 [〈ψk(x1 + 1
2s1)ψk(x2 + 1

2s2)〉

×〈ψk(x1 − 1
2s1)ψk(x2 − 1

2s2)〉
+〈ψk(x1 + 1

2s1)ψk(x2 − 1
2s2)〉〈ψk(x1 − 1

2s1)ψk(x2 + 1
2s2)〉]. (12)

Now using (8), we find

1k,R(s1, s2) = 1

A2
R

∫
R

d2x1

∫
R

d2x2 [J0(k|u + s−|)J0(k|u − s−|)
+J0(k|u + s+|)J0(k|u − s+|)] (13)

where we have defined

u = x1 − x2 and s± = 1
2(s1 ± s2). (14)

To proceed further, we assume that the areaAR is large, in the sense that both

AR � λ2 and AR � s2
1,2. (15)

In this case, the argument of each Bessel function is large over most of the range of the
integrand, and we can use the asymptotic formula

J0(x) '
(

2

πx

)1/2

cos
(
x − π

4

)
(16)

which in fact is an excellent approximation for allx > 1. Making the replacement (16),
expanding ins/u, and keeping only those terms which are not suppressed by extra powers
of eitherku or s2/u2, we have

J0(k|u + s|)J0(k|u − s|) ' 2

πku
cos

(
ku+ ks cosθ − π

4

)
cos

(
ku− ks cosθ − π

4

)
' 1

πku
[sin(2ku)+ cos(2ks cosθ)] (17)



5820 M Srednicki and F Stiernelof

whereθ is the angle betweenu ands. We now use (17) in (13), and notice that the rapid
oscillations of sin(2ku) will cause this term to integrate to zero (to a good approximation).
Thus we find

1k,R(s1, s2) = 1

πkA2
R

∫
R

d2x1

∫
R

d2x2 u
−1[cos(2ks− cosθ−)+ cos(2ks+ cosθ+)] (18)

whereθ+ (θ−) is the angle betweenu ands+ (s−).
To get a more explicit formula, we need to choose the shape of the averaging regionR.

For a disk of diameterd and areaAR = 1
4πd

2, the integrals in (18) can be done in closed
form by changing the integration variables tou = x1 − x2 andv = x1 + x2, integrating
overv subject to the constraints|v ± u| < d, and then integrating over the magnitude ofu
to get

1k,R(s1, s2) = 16

3π3/2kA
1/2
R

∫ 2π

0

dθ

2π
[cos(2ks− cosθ)+ cos(2ks+ cosθ)] (19)

whereθ+ and θ− have each been shifted and renamedθ . Performing the integral overθ
gives us our central result,

1k,R(s1, s2) = 16

3π3/2kA
1/2
R

[J0(k|s1 − s2|)+ J0(k|s1 + s2|)]. (20)

We now turn to a study of the implications of (20). The expected discrepancy between
Ck,R(s) and〈Ck,R(s)〉 is given by

1k,R(s, s)
1/2 = 1.38(k2AR)

−1/4[ 1
2 + 1

2J0(2ks)]
1/2 (21)

where the function in square brackets attains its maximum value of one whenks = 0.
Since (21) is proportional tok−1/2, it is O(h̄1/2); thus, the RMS amplitude of the expected
fluctuations inCk,R(s) vanishes in the classical limit. However, this amplitude is not
numerically small unlessAR � λ2. Both of these points are in accord with Berry’s original
(qualitative) discussion of the approach ofCk,R(s) to 〈Ck,R(s)〉 ash̄ → 0 [1]. Furthermore,
1k,R(s, s)

1/2 is the same order in ¯h as any corrections due to scars. This is consistent with
the idea [3] that scars represent a particular organization of the Gaussian fluctuations in the
eigenfunction, rather than constituting an additional phenomenon.

For comparison, we turn to the numerical results of Li and Robnik [5] for the Robnik
billiard [6]. We computedCk,R(s) using the eigenfunction withk = 790.644, shown in
figure 3 of [5], which was kindly supplied to us by Li and Robnik. The averaging region
R was taken to be a disk with diameterd = 0.273 = 34.4λ. For this value ofd, the
coefficient of the bracketed function in (21) is 0.100. The leading corrections to (20) from
terms we have neglected (due to our various approximations) are suppressed by an extra
factor of either 1/kA1/2

R = 0.005 or s2/AR; for ks = 30, s2/AR = 0.025. In figures 1–4,
we plot the actual correlation functionCk,R(s) as a full curve, along with a shaded band
encompassing the range〈Ck,R(s)〉 ±1k,R(s, s)

1/2, for four different averaging regions. In
these plots,s is taken to be parallel to thex-axis; we found visually similar results (which
are not shown) for other directions ofs. We see that the actualCk,R(s) usually lies within
the shaded band, but also has (sometimes large) excursions outside it. Without attempting a
detailed quantitative analysis, we can say that these graphs are qualitatively consistent with
what we expect.

Li and Robnik [5] suggested that the discrepancy betweenCk,R(s) and〈Ck,R(s)〉 could
be reduced by averagingCk,R(s) over the direction ofs. Let us define

C̄k,R(s) ≡
∫ 2π

0

dφ

2π
Ck,R(s(φ)) (22)
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10 20
ks

0

1

C
(s

)

Figure 1. The autocorrelation functionCk,R(s) is shown as a full curve. The grey band depicts
〈Ck,R(s)〉 ± 1k,R(s, s)

1/2, which is the expected root-mean-square range ofCk,R(s). The
Robnik billiard is shown in the inset; the averaging regionR is indicated by the full circle, and
the direction of the separation vectors is indicated by the direction of the two-headed arrow,
which has unit length, equal to 126 wavelengths.

10 20
ks

0

1

C
(s

)

Figure 2. Same as figure 1.

wheres(φ) = (s cosφ, s sinφ). Obviously, we have

〈C̄k,R(s)〉 = 〈Ck,R(s)〉 = J0(ks). (23)

We also define

1̄k,R(s1, s2) ≡ 〈C̄k,R(s1)C̄k,R(s2)〉 − 〈C̄k,R(s1)〉〈C̄k,R(s2)〉

=
∫ 2π

0

dφ1

2π

∫ 2π

0

dφ2

2π
1k,R(s1(φ1), s2(φ2)). (24)

Then, using (20), we find

1̄k,R(s1, s2) = 32

3π3/2kA
1/2
R

∫ 2π

0

dφ

2π
J0(k[s2

1 + s2
2 ± 2s1s2 cosφ]1/2) (25)

whereφ = φ1 − φ2; this integral can be performed to yield

1̄k,R(s1, s2) = 32

3π3/2kA
1/2
R

J0(ks1)J0(ks2). (26)
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10 20
ks

0

1

C
(s

)

Figure 3. Same as figure 1.
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Figure 4. Same as figure 1.

The fact that 1̄k,R(s1, s2) is proportional to 〈C̄k,R(s1)〉〈C̄k,R(s2)〉 has dramatic
consequences; it implies thatC̄k,R(s)/〈C̄k,R(s)〉 must be independent ofs. To demonstrate
this, we choose a set of orthonormal basis functionsfn(s), n = 0, 1, 2, . . ., with f0(s)

chosen to be equal to〈C̄k,R(s)〉. We require orthonormality in the sense that∫ ∞

0
ds w(s)fn(s)fm(s) = δnm (27)

wherew(s) is any weight function which ensures the convergence and correct normalization
of the integral whenn = m = 0. (Since〈C̄k,R(s)〉 = J0(ks), we could construct such a
set of basis functions by starting with the Bessel functionsJn(ks) and then performing
Gram–Schmidt orthogonalization.) Once we have the basis functions, we can write

C̄k,R(s) =
∞∑
n=0

cnfn(s)

cn =
∫ ∞

0
ds w(s)fn(s)C̄k,R(s)

(28)

where thecn’s should be regarded as random variables. By construction, we have

〈cn〉 = δn0. (29)
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Using (26), we can also compute the expected value ofc2
n. We find

〈c2
n〉 − 〈cn〉2 =

∫ ∞

0
ds1w(s1)fn(s1)

∫ ∞

0
ds2w(s2)fn(s2)1̄k,R(s1, s2)

= 32

3π3/2kA
1/2
R

∫ ∞

0
ds1w(s1)fn(s1)f0(s1)

∫ ∞

0
ds2w(s2)fn(s2)f0(s2)

= 32

3π3/2kA
1/2
R

δn0. (30)

Thus 〈c2
n〉 = 0 if n 6= 0, indicating that the probability distribution has no support for any

nonzerocn other thanc0. ThereforeC̄k,R(s) ∝ f0(s) = 〈C̄k,R(s)〉.
However, we must remember that there are additional contributions to1̄k,R(s1, s2) which

are suppressed by an extra factor of either 1/kA
1/2
R or s2/AR, and that these will make small

corrections to the functional form of̄1k,R(s1, s2). This means that̄Ck,R(s)/〈C̄k,R(s)〉 should
be independent ofs up to corrections of order 1/kA1/2

R ands2/AR.

10 20
ks

0

1

C
(s

)

Figure 5. The autocorrelation function̄Ck,R(s), averaged over the direction of the separation
vectors, is shown as a full curve. The grey band depicts〈C̄k,R(s)〉 ± 1̄k,R(s, s)

1/2, which is
the expected root-mean-square range ofC̄k,R(s). The Robnik billiard is shown in the inset; the
averaging regionR is indicated by the full circle.

The discrepancy between̄Ck,R(s) and〈C̄k,R(s)〉 is governed bȳ1k,R(s, s)
1/2. In figure 5,

we plot the actual direction-averaged correlation functionC̄k,R(s) as a full curve, along
with a shaded band encompassing the range〈C̄k,R(s)〉 ± 1̄k,R(s, s)

1/2, for one of the four
averaging regions used previously. We see that the actualC̄k,R(s) is consistent with our
expectations. In figure 6, we plot [C̄k,R(s)− C̄k,R(0)J0(ks)] + C̄k,R(0) for all four averaging
regions; this quantity should be independent ofs and equal toC̄k,R(0), up to corrections of
order 1/kA1/2

R = 0.005 ands2/AR = 0.025 (forks = 30). (We plot this quantity instead of
the ratioC̄k,R(s)/J0(ks) because the latter is dominated by numerical errors near the zeros
of its denominator.) The plots are remarkably flat; the small glitches which are present are
most likely due to the build-up of round-off errors in the numerical computation. These
plots confirm our prediction that̄Ck,R(s)/〈C̄k,R(s)〉 should be independent ofs.

This concludes our analysis of the fluctuations in the autocorrelation function for the
case of a circular averaging region. We now consider the dependence of1k,R(s1, s2) on
the shape of the averaging regionR.

For noncircularR, the integrals in (18) cannot be done in closed form for nonzeros1,2.
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1.2

Figure 6. [C̄k,R(s)− C̄k,R(0)J0(ks)] + C̄k,R(0) for each of the four averaging regions, with an
expanded vertical scale. This quantity is predicted to be independent ofs.

For the special cases1 = s2 = 0, however, we can evaluate (18) for a rectangular averaging
region. This will give us the shape dependence of1k,R(0, 0), and therefore (we hope) some
idea of the shape dependence of1k,R(s1, s2) for generals1 ands2. For a rectangle with
edge lengthsa and b, each of which is much greater than the wavelengthλ = 2π/k, we
find

1k,R(0, 0) = 4

3πkA1/2
R

[g(ξ)+ g(ξ−1)− (ξ + ξ−1)3/2] (31)

whereAR = ab is the rectangle’s area,ξ = b/a is the ratio of edge lengths, and

g(ξ) = ξ−3/2 + 3ξ−1/2 sinh−1 ξ. (32)

The ratio of1k,R(0, 0) for a rectangle to1k,R(0, 0) for a circle of the same area decreases
monotonically from 0.99 forξ = 1 to 0.74 for ξ = 10, and ultimately falls off as
ξ−1/2 ln ξ for large ξ . Thus, for moderate values ofξ , 1k,R(0, 0) exhibits only a mild
shape dependence.

Earlier numerical computations ofCk,R(s) [4, 5, 13] are all in qualitative agreement with
our considerations; specifically, the average discrepancy betweenCk,R(s) and 〈Ck,R(s)〉 is
always roughly given by(k2AR)

−1/4. A detailed comparison is hindered by two issues.
First, in accord with Berry’s original definition, earlier authors usually work with an
autocorrelation functioñCk,R(s) which, in our notation, is

C̃k,R(s) = Ck,R(s)

Ck,R(0)
. (33)

From our point of view,C̃k,R(s) is a much more complicated object thanCk,R(s); there is no
simple expression for〈C̃k,R(s)〉, because the relevant functional integral (ofCk,R(s)/Ck,R(0)
times the probability distributionP(ψk|k) overψk) cannot be done using the simple Gaussian
combinatorics of (10). Of course, by definitioñCk,R(0) = 1, and so essentially what happens
is that any fluctuation inCk,R(0) shows up as a multiplicative enhancement or suppression
of fluctuations inC̃k,R(s) at nonzeros.

Another problem occurs if an axis of symmetry of the billiard passes through the
averaging region. Every energy eigenfunction is either symmetric or antisymmetric under
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reflection about such an axis; this can be handled analytically by writing

ψk(x, y) = 1√
2

[χk(x, y)+ χk(x,−y)] (34)

(where we have illustratively assumed an eigenfunction symmetric about thex-axis), and
treatingχk(x) as a Gaussian random variable. This approach considerably enhances the
complexity of the analysis, however; for example, the number of independent terms on the
right-hand side of (10) grows from three to 48. The simplest solution is to do numerical anal-
ysis with averaging regions that do not cross any axes of symmetry, as we have done here.

Finally, we note that all of our results have a straightforward generalization to higher
dimensions. For aD-dimensional billiard, the autocorrelation function becomes [1]

〈Ck,R(s)〉 =
∫

dDp δ(p2 − k2)eip·s∫
dDp δ(p2 − k2)

= 2(D−2)/20(D/2)
J(D−2)/2(ks)

(ks)(D−2)/2

≡ FD(ks) (35)

whereJν(x) is a Bessel function. The generalizations of (20) and (26), which follow from
the properties ofFD(ks), are

1k,R(s1, s2) = γD

kD−1V
(D−1)/D
R

[FD(k|s1 − s2|)+ FD(k|s1 + s2|)] (36)

and

1̄k,R(s1, s2) = 2γD

kD−1V
(D−1)/D
R

FD(ks1)FD(ks2) (37)

whereVR is the D-dimensional volume of the spherical averaging region, andγD is a
numerical factor which we have not computed.

To conclude, we have performed an analysis of the autocorrelation functionCk,R(s)
under the assumption that the energy eigenfunctionψk(x) behaves like a Gaussian random
variable, in a sense which we have made precise. We find that, for a two-dimensional
billiard, Ck,R(s) should have O(h̄1/2) fluctuations about its expected value〈Ck,R(s)〉 =
J0(ks); scars from isolated periodic orbits would give corrections toCk,R(s) which are
also O(h̄1/2). We have given analytic formulae for the root-mean-square amplitude of
the expected fluctuations inCk,R(s). We find that a particularly useful object to study is
C̄k,R(s), which isCk,R(s) averaged over the angle ofs. We predict thatC̄k,R(s)/J0(ks) is
independent ofs, a prediction which is very well satisfied by the numerical results of Li
and Robnik for the Robnik billiard.
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